

THE GENERIC MAPPING TOOLS

Dr. Saji P. K. Assistant Professor, CUSAT.

Sessions

- Introduction
- How GMT Works?
- Some Unix/Linu Basics
- Basemap Plot
- Geographical
- Мар
- Write Tex
- Line Flot
- Symbol Plot
- Contour Plots
- Vector Plo

- 1 Introduction
- 2 How GMT Works?
- 3 Some Unix/Linux Basics
- 4 Basemap Plot
- 5 Geographical Map
- 6 Write Text
- 7 Line Plot
- 8 Symbol Plot
- 9 Contour Plots
- 10 Vector Plots

Introduction

How GMT

Some Unix/Linux Basics

aseman Plot

Geographical Man

Write Text

LL BL.

Symbol Plo

Contour Plots

Vector Plots

Session - 1 Introduction

What is GMT?

Introduction

How GMT Works?

Some Unix/Linu Basics

Basemap Plot

Geographical Map

Write Text

Symbol Plo

Contour Plots

ector Plots

- GMT stands for Generic Mapping Tools.
- GMT is a collection of commands that can be executed at the Unix/Linux terminal to produce graphic outputs.
- Often, GMT commands are written to a text file (with extension .gmt or .sh) and execute the file as a shell script.
- GMT need UNIX/Linux Environment.
- Graphic output from GMT is in the postscript format.

A sample GMT file

```
makecpt -T0/150/10 > color.cpt
                      awk '$$1 == 7 && $$4 > 0 {print $$3, $$2, $$4}' mld.txt > junk
                      psbasemap -P -JM8 -R40/110/-40/30 -B20 -X5 -Y15 -K > fig.ps
                      pscontour junk -R -J -Ccolor.cpt -I -O >> fig.ps
Introduction
                      psxy junk -R -J -Ccolor.cpt -Sc0.1 -O -K >> fig.ps
                      pscoast -J -R -B -W -O >> fig.ps
                      makecpt -T0/12/1 > color.cpt
                      awk '$$1 == 7 && $$4 > -999 {print $$3, $$2, $$4}' ../../Wind/lev1/
                  wind.txt > junk
                      psbasemap -P -JM -R40/110/-40/30 -B20 -Y-12 -O -K >> fig.ps
                      psxy junk -R -J -Ccolor.cpt -Sc0.03 -0 >> fig.ps
                  3:
                      makecpt -T20/30/1 > color.cpt
                      awk '$$1 == 7 && $$2 == 0 && $$5 > -99 {print $$4, $$3, $$5}' .../../
                  WOA2005/lev1/temp.txt > junk
                      psbasemap -P -JM8 -R40/110/-40/30 -B20 -X5 -Y18 -K > fig.ps
                      psxy junk -R -J -Ccolor.cpt -Sc0.3 -O -K >> fig.ps
                      makecpt -T0/10/1 > color.cpt
                      awk '$$1 == 7 \&\& $$4 > -999 \{print $$3, $$2, $$4\}' wind.txt > junk
                      psbasemap -P -JM -R40/110/-40/30 -B20 -Y-9 -O -K >> fig.ps
                      psxv junk -R -J -Ccolor.cpt -Sc0.03 -0 >> fig.ps
                  4:
                  # time series at a point
                      awk '$$2 == -0.5 && $$3 == 95.5 {print $$1, $$4}' mld.txt > junk
                      psxv junk -R0/12/0/150 -P -JX12/8 -B1/50WS -W.red -X5 -Y10 -K > fig.ps
```

History

Introduction

How GMT Works?

Unix/Linu Basics

Basemap Pic

Geographical Map

Write Text

Symbol Plot

Contour Plots

/ector Plo

- Initiated in 1987 at Lamont-Doherty Earth Observatory, Columbia University by graduate students Paul Wessel and Walter H. F. Smith.
- Grew out of frustration with the existing geophysics software.
- Version 1.0 in 1988.
- Version 2.0 was released 1991, and quickly spread worldwide.
- A major upgrade (GMT 4.0) n 2004.
- GMT 5.0 in 2013.
- GMT 6.0 is under development.

Paul Wessel

Let us Begin with An Exercise

Method - 1 Run at Linux terminal.

| gmt psbasemap -P -JX10 -R0/10/-20/20 -B5/10 > fig.ps

Introduction

How GMT

Some Unix/Linu Basics

Basemap Pl

Geographica Map

Write Tex

Line Plot

Symbol Plo

Contour Plots

Introduction

How GMT Works?

Some Unix/Linu Basics

Basemap Plo

Geographical Map

Write Tex

Symbol Plo

Contour Plots

Vector Plots

Method - 2 Run as a file

- (1) Save the command to a file, say, 1.gmt
- (2) Execute the command 'sh 1.gmt' at the terminal

How to Install GMT

Using software manager. Search for 'gmt' and install.

- Installing from source. For this, download the files from GMT website and follow instructions.
- Using command (in Debian based systems)
 sudo apt-get install gmt gmt-dcw gmt-gshhg-full

Some Unix/Linux Basics

Basemap Plo

Geographica Map

Write Tex

Symbol Dio

Contour Plots

Vector Plo

Design Philosophy

Introduction

How GMT Works?

Some Unix/Linu Basics

Basemap Plot

Geographica Map

Write Tex

Symbol Dia

Contour Plots

ector Plots

- GMT consists of modules (programs) focussing on specific tasks.
- Users have to combine several GMT modules to get the desired output.
- Integrates with Unix tools
- Can run modules in command-line or as shell script files.

Why use GMT?

Introduction

How GMT Works?

Some Unix/Linu Basics

Basemap Plot

Geographical Map

Write Tex

Symbol Plot

Contour Plots

ector Plo

- Free of cost.
- Open source code.
- Works in all OS platforms
- Support over 30 map projections with high resolution coastline.
- Works with ascii, netcdf file formats.
- Produces quality postscript outputs that can be converted to other formats
- Developers are also geophysical scientists who uses GMT.

What GMT can do?

Introduction

How GMT Works?

Some Unix/Linux Basics

Basemap Plo

Geographical Map

Line Plot

Symbol Plot

Contour Plots

ector Plots

■ Data processing and manipulation

Filter time series, filter 2D data, trend fitting, gridding xyz data, resampling, grid masking, optimal triangulations, spectral estimation, data reformatting, geospatial operations, subset extraction.

■ Postscript plot generation

Points, lines, symbols, polygons Text, labels, legends Histograms, geographical map, Contour maps, Color images, Vector fields

GMT suppliments

Introduction

How GMT Works?

Some Unix/Linu Basics

Basemap Plot

Geographical Map

Write Tex

Cantaun Diat

ector Plots

- Earthquake focal mechanisms
- Sandwell/Smith IMG files
- Plate tectonics
- MGD77 analysis and plotting
- Crossover analysis
- Spherical gridding

Getting Help

Introduction

How GMT Works?

Some Unix/Linu: Basics

Basemap Plo

Geographical Map

Write Tex

Contour Plots

/ector Plots

- GMT Website
 - https://www.soest.hawaii.edu/gmt/
 - http://gmt.soest.hawaii.edu/
- Man pages (from terminal or google)

Introduction

How GMT Works?

Some Unix/Linux Basics

laceman Plot

Geographical

Write Text

Line Plot

Symbol Plo

Contour Plots

ector Plots/

Session - 2

How GMT Works?

Process

troduction

How GMT Works?

Some Unix/Linux Basics

Basemap Plo

Geographica Map

Write Text

LL BL.

Symbol Plo

Contour Plots

Vector Plots

GMT Module

How GMT Works?

Some Unix/Linux Basics

Basemap Plo

Geographica Map

Write Tex

Line Plot

Symbol Plo

Contour Plots

'ector Plo

Syntax for a GMT module :

gmt command options redirection outputfile

where

command Graphic and data processing GMT commands

options Various options which start with a negative sign followed by a capital letter and values

redirection Either single arrow (>) or double arrow (>>).

Single arrow will delete all the present contents of the output file and write new contents to it. Double arrow will keep its present content and append new content to it.

outputfile This can be either a postscript graphic file or a text file or a binary file depends upon the gmt command used.

4 D > 4 P > 4 B > 4 B > B 9 9 P

GMT Commands

Introductio

How GMT Works?

Some Unix/Linu Basics

Basemap Plo

Geographica Map

Write Text

C. b al Dia

Contour Plots

ector Plots

GMT has about 80 programs/commands to produce graphic and data outputs.

FILTERING OF 1-D AND 2-D DATA:

- blockmean L2 (x,y,z) data filter/decimator
- <u>blockmedian</u> L1 (x,y,z) data filter/decimator
- blockmode Mode-estimating (x,y,z) data filter/decimator
- filter1d Filter 1-D data (time series)
- grdfilter Filter 2-D data in space domain

Introductio

How GMT Works?

Some Unix/Linu: Basics

Basemap Plo

Geographical Map

Write Text

. .

Symbol Plo

Contour Plots

/ector Plots

PLOTTING OF 1-D and 2-D DATA:

- grdcontour Contouring of 2-D gridded data
- grdimage Produce images from 2-D gridded datar
- grdvector Plot vector fields from 2-D gridded data
- grdview 3-D perspective imaging of 2-D gridded data
- psbasemap Create a basemap frame
- psclip Use polygon files as clipping paths
- pscoast Plot coastlines, filled continents, rivers, and political borders
- <u>pscontour</u> Direct contouring or imaging of xyz-data by triangulation
- <u>pshistogram</u> Plot a histogram
- <u>psimage</u> Plot Sun rasterfiles on a map
- pslegend Plot legend on a map
- psmask Create overlay to mask specified regions of a map
- psrose Plot sector or rose diagrams
- psscale Plot grayscale or colorscale
- pstext Plot textstrings
- pswiggle Draw anomalies along track
- psxy Plot symbols, polygons, and lines in 2-D
- psxyz Plot symbols, polygons, and lines in 3-D

Introductio

How GMT Works?

Some Unix/Linu> Basics

Basemap Plot

Geographical Map

Write Text

Line Plot

Contour Plots

ector Plots

GRIDDING OF (X,Y,Z) DATA:

- greenspline Gridding using Green's function splines
- <u>nearneighbor</u> Nearest-neighbor gridding scheme
- <u>surface</u> Continuous curvature gridding algorithm
- triangulate Perform optimal Delauney triangulation on xyz data

SAMPLING OF 1-D AND 2-D DATA:

- grdsample Resample a 2-D gridded data onto new grid
- grdtrack Sampling of 2-D data along 1-D track
- sample1d Resampling of 1-D data

PROJECTION AND MAP-TRANSFORMATION:

- grdproject Project gridded data onto new coordinate system
- mapproject Transformation of coordinate systems
- project Project data onto lines/great circles

How GMT

Some Unix/Linu Basics

Basemap Plo

Geographical Map

Write Text

Symbol Plo

Contour Plots

ector Plo

INFORMATION:

- gmtcolors Information on how to specify colors in GMT
- gmtdefaults List the current default settings
- gmtset Edit parameters in the .gmtdefaults file
- grdinfo Get information about grd files
- minmax Report extreme values in table datafiles

CONVERT OR EXTRACT SUBSETS OF DATA:

- gmt2rgb Convert Sun raster or grdfile to red, green, blue component grids
- gmtconvert Convert table data from one format to another
- gmtmath Reverse Polish calculator for table data
- gmtselect Select table subsets based on multiple spatial criteria
- grd2xyz Convert 2-D gridded data to table
- grdcut Cut a sub-region from a grd file
- grdpaste Paste together grdfiles along common edge
- grdreformat Convert from one grdformat to another
- splitxyz Split xyz files into several segments
- xyz2grd Convert table to 2-D grd file

MISCELLANEOUS:

- makecpt Create GMT color palette tables
- spectrum1d Compute spectral estimates from time-series
- <u>triangulate</u> Perform optimal Delauney triangulation on xyz data

Introductio

How GMT Works?

Some Unix/Linu> Basics

Basemap Plo

Geographica Map

Write Text

Symbol Die

Contour Plots

Vector Plots

DETERMINE TRENDS IN 1-D AND 2-D DATA:

- <u>fitcircle</u> Finds best-fitting great or small circles
- $\underline{\text{grdtrend}}$ Fits polynomial trends to $\underline{\text{grdfiles}}$ (z = f(x,y))
- $\underline{\text{trend1d}}$ Fits polynomial or Fourier trends to y = f(x) series
- $\underline{\text{trend2d}}$ Fits polynomial trends to z = f(x,y) series

OTHER OPERATIONS ON 2-D GRIDS:

- grd2cpt Make color palette table from grdfile
- grdblend Blend several gridded data sets into one
- grdclip Limit the z-range in gridded data sets
- grdedit Modify grd header information
- grdfft Operate on grdfiles in frequency domain
- grdgradient Compute directional gradient from grdfiles
- grdhisteg Histogram equalization for grdfiles
- grdlandmask Creates mask grdfile from coastline database
- grdmask Set nodes outside a clip path to a constant
- grdmath Reverse Polish calculator for grdfiles
- grdvolume Calculating volume under a surface within a contour

Standardized Options

Introductio

How GMT Works?

Some Unix/Linu Basics

Basemap Plo

Geographical Map

Write Text

Complete Di

Contour Plots

-J Map projection

- -R Extent of the map/plot region
- B Defines tickmarks, annotations, and labels for basemaps and axes
- -P Selects Portrait plot orientation [Default is landscape]
- X Sets the x-coordinate for the plot origin on the page
- Y Sets the y-coordinate for the plot origin on the page
- -K Allows more plot code to be appended to this plot later
- Allows this plot code to be appended to an existing plot
- -V Selects verbose operation; reporting on progress

Projections

Introductio

How GMT Works?

Some Unix/Linu Basics

Basemap Plot

Geographica Map

Write Tex

Symbol Dia

Contour Plots

ector Plots

GMT offers 31 map projections that are classified into

- Azimuthal Projection
- Conical Projection
- Cylindrical Projection
 - Miscellaneous Projections
- Non-geographic Projections

Introduction

How GMT Works?

Some Unix/Linu: Basics

Basemap Plo

Geographica Map

Write Text

Symbol Pl

Contour Plots

Vector Plot

WITH GMT PROJECTION CODES		
-J (upper case for width, lower case for scale) Map projection		
-JAlon ₀ /lat ₀ [/horizon]/width	Lambert azimuthal equal area	
-JBlon ₀ /lat ₀ /lat ₁ /lat ₂ width	Albers conic equal area	
-JClon ₀ /lat ₀ width	Cassini cylindrical	
-JCyl_stere/[lon ₀ [/lat ₀ /]]width	Cylindrical stereographic	
-JDlon ₀ /lat ₀ /lat ₁ /lat ₂ width	Equidistant conic	
-JElon ₀ /lat ₀ [/horizon]/width	Azimuthal equidistant	
-JFlon ₀ /lat ₀ [/horizon]/width	Azimuthal gnomonic	
-JGlon ₀ /lat ₀ [/horizon]/width	Azimuthal orthographic	
-JGlon ₀ /lat ₀ alt/azim/tilt/twist/W/H/width	General perspective	
-JH[lon ₀ /]width	Hammer equal area	
-JI[lon ₀ /]width	Sinusoidal equal area	
-JJ[lon ₀ /]width	Miller cylindrical	
-JKf[lon ₀ /]width	Eckert IV equal area	
-JKs[lon ₀ /]width	Eckert VI equal area	
-JLlon ₀ /lat ₀ /lat ₁ /lat ₂ width	Lambert conic conformal	
-JM[lon ₀ [/lat ₀ /]]width	Mercator cylindrical	
-JN[lon ₀ /]width	Robinson	
-JOalon ₀ /lat ₀ azim/width	Oblique Mercator, 1: origin and azim	
-JOblon ₀ /lat ₀ /lon ₁ /lat ₁ width	Oblique Mercator, 2: two points	
-JOclon ₀ /lat ₀ /lon _p /lat _p width	Oblique Mercator, 3: origin and pole	
-JP[a]width[/origin]	Polar [azimuthal] (θ, r) (or cylindrical)	
-JPoly[lon ₀ [/lat ₀ /]]width	(American) polyconic	
-JQ[lon ₀ [/lat ₀ /]]width	Equidistant cylindrical	
-JR[lon ₀ /]width	Winkel Tripel	
-JSlon ₀ /lat ₀ [/horizon]/width	General stereographic	

Introduction

How GMT

Some Unix/Linux Basics

seman Plot

Geographical Man

Write Tex

. . . _ . .

Symbol Plo

Contour Plots

Vector Plots

Session - 3 Some Unix/Linux Basics

4□ → 4団 → 4 豆 → 1 型 → 1 9 9 0 0 0

Redirection

To save the results of a command to an output file.

How GMT Works?

Some Unix/Linux Basics

Communities I

Geographical Map

Write Text Line Plot

Symbol Plo

Contour Plots

/ector Plots

```
Single arrow (>) to start new output.
Syntax: gmt module inputfile > outputfile
For example,
gmt pscoast -P -JM10 -R30/100/-30/30 -B10 -W1 -G200 > fig.ps
```

Double arrow (>>) to update/append the output

```
Syntax: gmt module inputfile >> outputfile
```

For example,

```
gmt psxy sample.txt -P -JX10 -R0/100/0/30 -B10 -W1 -O >> fig.ps
```

Piping

Introductio

How GMT Works?

Some Unix/Linux Basics

Basemap Plo

Geographical Map

Write Tex

Symbol Plo

Contour Plots

Vector Plot

Used when the output from one module in taken as the input to another module.

Someprogram | gmt module1 | gmt module1 > OutputFile

"wild cards"

Introduction

How GMT

Some Unix/Linu Basics

Baseman Plo

Geographical Map

Write Tex

C--+-... Dl-+-

Jector Plots

Code	Meaning
*	Matches everything
?	Matches any single character

Introduction

How GMT Works?

Some Unix/Linux Basics

Basemap Plo

Geographical Map

Write Text

Symbol Plo

Contour Plots

ector Plots

- awk is one of the most prominent text/data processing utility on GNU/Linux.
- It is very powerful and uses simple programming language.
- It is used to extract data from files.
- Writing codes in other languages (C, fortran) is time-consuming and inconvenient.
- awk can perform this in one or two lines of codes.

Example:

Create a file that store the output of the 'ls -l' command

Is -I * > x.txt

Print first line awk ' {print \$1}' x.txt

Multiply 7th column with 2 awk ' {print \$7*2}' x.txt

Printing 7th column for lines from 10th onwards awk ' NR > 10 {print \$7 }' x.txt

Another example awk ' NR > 10 && \$3 > 100{ print \$7 }' x.txt

Introduction

How GMT Works?

Some Unix/Linux Basics

Basemap Plo

Geographical Map

Write Text

Symbol Plot

Contour Plots

Vector Pic

echo command

Introductio

How GMT Works?

Some Unix/Linux Basics

Basemap Plo

Geographical Map

Write Tex

. .

Symbol Plot

Contour Plots

Vector Pla

```
■ The echo program displays text.
```

It is a handy tool to create customized output to terminal or files.

```
Example
echo 'Hello'
echo '4'
echo '4+3'
echo 'Hello' > hello.txt
```

Introduction

How GMT

Some Unix/Linux

Basemap Plot

Geographical Man

Write Text

Line Plot

Symbol Plo

Contour Plots

/ector Plots

Session - 4

Basemap Plot

Introductio

How GMT Works?

Some Unix/Linux Basics

Basemap Plot

Geographical Map

Write Text

Contour Plots

Vector Plots

- Basemap is to set the various aspects of a plot such as projection, axis ranges, tick mark labels and intervals, position etc.
- The GMT command 'psbasemap' is used to generate basemaps.
- Syntax gmt psbasemap options > psfile

Options for psbasemap

ntroductio

How GMT Works?

Some Unix/Linu Basics

Basemap Plot

Geographical Map

Write Text

C. b al Di

Contour Plots

00...00. 1 .01.

Vector Plo

Mandatory Options

- -J Projection (geographic or non-geographic)
- -R Region or range of X and Y axes. Should be given as -Rxmin/xmax/ymin/ymax
- -B Tick mark details (labels, intervals, grids, axis title)

Additional options

- -G Sets background color
- -X X position
- -Y Y position

Exercise (Linear Projection)

gmt psbasemap -P -JX10 -R0/10/0/20 -Ba5 > fig.ps

Basemap Plot

Modify -J (Axis length)

Introduction

How GMT Works?

Some Unix/Linu: Basics

Basemap Plot

Geographical Map

Write Tex

Symbol Pla

Contour Plots

/ector Plots

- -JX10/5 (Change different axis lengths)
- -JX10/-5 (Reverse Y axis)
- -J×0.5 (Scale)

Modify -J (Logarithmic Projection)

Introduction

How GMT Works?

Some Unix/Linux Basics

Basemap Plot

Geographical Map

Write Text

Symbol Plo

Contour Plots

ector Plots

Append 'I' to -JX

gmt psbasemap -R1/10000/1e20/1e25 -P -JX9I/6I -Ba1pf3/a1pf3 > fig.ps

Modify -J (Metcator Projection)

Mercator Projection (-Jm or -JM)

gmt psbasemap -P -Jm0.15 -R30/100/-30/30 -B20/10 > fig.ps

Some Unix/Linux

Basics

Basemap Plot

Geographica Map

Write Tex

2.....

Symbol Plo

Contour Plots

Vector P

Here the -R option should have the geographic limits.

Modify -B (Axis title, annotation etc.)

Introductio

How GMT

Some Unix/Linu: Basics

Basemap Plot

Geographical Map

Write Text

Symbol Plo

Contour Plots

/ector Plots

- -Ba5/a10 [Different label annotations]
- -Ba5f1/a10f5 [Adding minor ticks]
- -Ba5f1g1/a10f5g5 [Adding grids]
- -Ba5f1g1:"X axis":/a10f5g5:"Y axis": [Axis labels]
- -Ba5f1g1:"X axis":/a10f5g5:"Y axis":WS [Select west and south axis]

Add Basemap background color with -G

Introduction

How GMT Works?

Some Unix/Linu Basics

Basemap Plot

Geographical Map

Write Tex

vvrite rex

C. ...I. I DI.

Contour Plate

Jector Plots

- Gblue Fill with blue color
- -G255/0/0 Red colour in RGB format

Change figure Position with -X, -Y

Introduction

How GMT Works?

Some Unix/Linux Basics

Basemap Plot

Geographical Map

Write Tex

6 1 1 51

Contour Plots

/ector Plots

Positions are relative to the previous figure.

Default position is at the bottom left corner of the page.

- -X5 (shift 5cm to right)
- -Y10 (shift 10cm up)
- -X-8 (shift 8cm to the left)

Using variables

Introduction

How GMT Works?

Some Unix/Linu Basics

Basemap Plot

Geographical Map

Write Text

to Dis

Symbol Plo

Contour Plots

Vector Plots

Variables can be defined in the beginning of a gmt file and can be referred within the script. While referring, the variable must be preceded with '\$'. For example,

```
psfile=fig.ps  \begin{array}{l} psfile=fig.ps \\ region=30/100/-30/30 \\ gmt \ psbasemap \ -P \ -Jm0.15 \ -R\$region \ -B20/10 \ > \$psfile \end{array}
```

More Plots with -K, -O Options

The -K and -O options control the generation of PostScript code for multiple overlay plots. All PostScript files must have a header (for initializations), a body (drawing the figure), and a trailer (printing it out).

Thus, when overlaying several GMT plots we must make sure that the first plot call ommits the trailer, that all intermediate calls omit both header and trailer, and that the final overlay omits the header.

- **-K** omits the trailer which implies that more PostScript code will be appended later.
- O selects Overlay plot mode and ommits the header information

Some Unix/Linux

Basemap Plot

Geographical Map

Write Text

Symbol Plot

Contour Plots

Vector Plots

Example -1: Two Plots

gmt psbasemap -P -JX10 -R0/100/0/10 -B20/5 -X5 -Y5 -K > fig.ps gmt psbasemap -P -JX10 -R0/100/0/10 -B20/5 -X0 -Y12 -O >> fig.ps

Introduction

How GMT

Some Unix/Linux Basics

Basemap Plot

Geographica Map

Write Text

L. BL.

Symbol Pla

Contour Plots

ector Plots

Example - 2: Four Plots

```
gmt psbasemap -P -JX6 -R0/100/0/10 -B20/5 -X5 -Y5 -K > fig.ps gmt psbasemap -P -JX -R -B -X8 -O -K >> fig.ps gmt psbasemap -P -JX -R -B -X-8 -Y8 -O -K >> fig.ps gmt psbasemap -P -JX -R -B -X-8 -O >> fig.ps
```


Basemap Plot

How GMT

Some Unix/Linux Basics

Saseman Plot

Geographical Map

Write Text

Line Plot

Symbol Plo

Contour Plots

ector Plots

Session - 5

Geographical Map

pscoast

The pscoast command can plot coastline, river and national border derived from the GSHHG database. It is available at different resolutions such as low, crude, high, and full.

Standardized options: -P -J -R -B

Additional options :

- -D Data resolution (-DI, -Dc, -Dh, -Df)
- W Draw coastline and line thickness.
- -G Color land area
- -S Color water area
 - -I Draw rivers
- -L Plot map scale
- -A Exclude small features
- -N Draw political borders

Note: One of -W, -G, and -S is mandatory.

Introduction

Works? Some

Basemap Plo

Geographical Map

Write Text

Symbol Die

Contour Plots

Vester Dista

How GMT

Some Unix/Linu Basics

Basemap Plo

Geographical Map

Write Text

.

C Dl. ..

Vector Plots

6.1 Conic Projections

- 6.1.1 Albers Conic Equal-Area Projection (-Jb -JB)
- 6.1.2 Lambert Conic Conformal Projection (-Jl -JL)
- 6.1.3 Equidistant Conic Projection (-Jd -JD)

Geographical Мар

6.2 Azimuthal Projections

- 6.2.1 Lambert Azimuthal Equal-Area (-Ja -JA)
 - 6.2.1.1 Rectangular map
 - 6.2.1.2 Hemisphere map
- o 6.2.2 Stereographic Equal-Angle Projection (-Js -JS)
 - 6.2.2.1 Polar Stereographic Map
 - 6.2.2.2 Rectangular Stereographic Map
- 6.2.2.3 General Stereographic Map 6.2.3 Orthographic Projection (-Iq -IG)
- 6.2.4 Azimuthal Equidistant Projection (-Je -JE)
- 6.2.5 Gnomonic Projection (-If -IF)

How GMT Works?

Some Unix/Linux Basics

Basemap Plo

Geographical Map

Write Text

Contour Plots

Vector Plots

6.3 Cylindrical Projections

- 6.3.1 Mercator Projection (-Jm -JM)
- 6.3.2 Transverse Mercator (-Jt -JT)
- 6.3.3 Universal Transverse Mercator UTM (-Ju -JU)
- o <u>6.3.4 Oblique Mercator</u> (**-Jo -JO**)
- 6.3.5 Cassini Cylindrical Projection (-Jc -JC)
- 6.3.6 Cylindrical Equidistant Projection (-Jq -JQ)
- 6.3.7 General Cylindrical Projections (-Jy -JY)
- 6.3.8 Miller Cylindrical Projections (-Jj -JJ)

How GMT

Some Unix/Linux Basics

Basemap Plo

Geographical Map

Write Text

. . . _ . . .

Symbol Plo

Contour Plots

ector Plots

6.4 Miscellaneous Projections

- 6.4.1 Hammer Projection (-Jh -JH)
- 6.4.2 Mollweide Projection (-Jw -JW)
- <u>6.4.3 Winkel Tripel Projection (**-Jr-JR**)</u>
- 6.4.4 Robinson Projection (-Jn -JN)
- o 6.4.5 Eckert IV and VI Projection (-Jk -JK)
- o 6.4.6 Sinusoidal Projection (-Ji -JI)
- <u>6.4.7 Van der Grinten Projection (**-Jv -JV**)</u>

How GMT

Some Unix/Linu Basics

Basemap Plo

Geographical Map

Write Text

Symbol Plo

Contour Plots

ector Plots

Mercator Projection

gmt pscoast -P -JM15 -R180W/180E/-60/60 -B90/30 -Ggrey -W1 > fig.ps

Lambert azimuthal equal-area projection

pscoast -Rg -JA280/30/3.5i -B30g30/15g15 -Dc -A1000 -Gblack -P

Figure 6.5: Hemisphere map using the Lambert azimuthal equal-area projection.

ntroduction

low CMT

Some Unix/Linu

Basemap PI

Geographical Map

Write Text

Line Plot

Symbol Pla

Contour Plots

Vector Plot

Albers equal area Conic Projection

Geographical Map pscoast -R110/140/20/35 -JB125/20/25/45/5i -B10g5 -DI -Glightgray -W0.25p -A250 -P

 $\textbf{Figure 6.1:} \ \textbf{Albers equal-area conic map projection}$

Polar stereographic conformal projection with rectangular borders.

pscoast -R-25/59/70/72r -JS10/90/11c -B30g10/5g5 -DI -A250 -Glight gray -W.25p -P

Figure 6.8: Polar stereographic conformal projection with rectangular borders.

Introduction

Some Unix/Linu:

Baseman Plo

Geographical Map

Write Tex

Symbol Plo

Contour Plot

vector Pi

psbasemap and pscoast

Introductio

How GMT Works?

Some Unix/Linu: Basics

asemap Plo

Geographical Map

Write Text

Contour Plate

ector Plots

gmt psbasemap -P -JM10 -R30/110/-30/30 -Ba20/10 -X5 -Y10 -K > fig.ps gmt pscoast -J -R -B -DI -W -Ggrey -O >> fig.ps

How GMT

Some Unix/Linux Basics

Basemap Plot

Geographical Man

Write Text

Line i lot

Symbol Plot

Contour Plots

Vector Plots

Session - 6

Write text with pstext

pstext Options

Introductio

How GM1 Works?

Some Unix/Linux Basics

basemap Fior

Geographical Map

Write Text

Line Plo

Syllibol I lot

Contour Plots

Vector Pla

pstext command is used to write text on maps with variable size, font, and orientation. The options are:

- fileFile name of the input file. The file should contain data in the format "x,y,Text"
- -J Projection
- -R Region
- -F Font parameters
- N Plot text outside the domain (-R)

-F Option

Introductio

How GMT Works?

Some Unix/Linu Basics

Basemap Plo

Geographical Map

Write Text

Line Plo

Symbol Ple

Contour Plot

ector Plot

Syntax: -F+a+f+j+t

+a Font angle. Example, +a90

+f Font (size,type,color). Example. +f12p,Helvetica,red

+j Justify (L,C,R,T,M,B). Example, +jLM

+t Text

Example-1

The file sample1.txt contains only one line as "40 0 Figure".

gmt psbasemap -P -JX10 -R0/100/0/10 -B20/5 -X5 -Y5 -K > fig.ps gmt pstext sample1.txt -N -R -J -F+f14p,Helvetica,black+a0+jLB -B -O >> fig.ps

Introduction

How GMT Works?

Some Unix/Linux Basics

asemap Plo

Geographica Map

Write Text

ii bi .

Symbol Pla

Contour Plots

Vector P

Example-2

The sample2.txt file contains the following data

80 9 Text1

80 8.5 Text2

80 8 Text3

gmt psbasemap -P -JX10 -R0/100/0/10 -B20/5 -X5 -Y5 -K > fig.ps

gmt pstext sample2.txt -N -R -J -F+f11p,Helvetica,black+a0+jLB -B -O >> fig.ps

Write Text

How GMT

Some Unix/Linux Basics

aseman Plot

Geographical Map

Write Tex

Line Plot

Symbol Die

Contour Plots

Vector Plots

Session - 7

Line Plot

psxy command

Introduction

How GM7 Works?

Some Unix/Linu: Basics

Basemap Plo

Geographical Map

Write Tex

.

Contour Plot

/ector Plots

- The psxy gmt command is used plot lines, polygons, and symbols on maps
- In addition to the basemap options (-P -J -R -B, psxy requires the option -W that represent line properties.
- psxy needs an input file as input. It takes the first column data in the file as X series and second as Y series.

Example - 1

gmt psbasemap -P -JX10 -R0/12/0/100 -B2/10 -X4 -Y10 -K > fig.ps psxy sample.txt -J -R -B -W -O >> fig.ps

Line Plot

Additional options for -W

Introductio

How GMT Works?

Some Unix/Linu Basics

Basemap Plo

Geographical Map

Write Text

Line Plot

Contour Plots

ector Plots

- -W Normal line (with thickness 1)
- -W3 Thicker line
- -W1,'-' Dashed line
- -W1,red Red color line using color name
- -W1/255/0/0 Red color line with R/G/B

Line Plot

Example -2: Ocean Temperature profile

gmt psbasemap -P -JX8/-12 -R0/30/0/3000 -B10:"T (@+o@+C)":/500:"Depth (m)":WN -X4 -Y10 -K > fig.ps

gmt psxy profile-t.txt -J -R -B -W2 -O >> fig.ps

Line Plot

T (°C)

Example -3: Temperature, Salinity, Density

ntroductio

How GMT

Some Unix/Linu Basics

basemap Pi

Geographical Map

Write Tex

Line Plot

Symbol Plo

Contour Plots

ector Plots

Input file: profile.txt

Data format: Depth, Temperature, Salinity, Density

gmt code:

```
# Temperature
gmt psbasemap -P -JX4/-12 -Re/30/0/3000 -B10:"T (@+o@+C)":/500:"Depth (m)":WN -X4 -Y10 -K > fig.ps
awk 'fprint $2, $1}' profile.txt > junk
gmt psxy junk -J -R -B -W1 -O -K >> fig.ps

# # salinity
# salinity
gmt psxy semap -J -R34/36/8/3000 -B1:"S (PPT)":/500:"Depth (m)":wN -X5 -O -K >> fig.ps
awk '{print $3, $1}' profile.txt > junk
gmt psxy junk -J -R -B -W1 -O -K >> fig.ps
# besity
# spassemap -J -R1020/1045/0/3000 -B10:"Density ":/500:"Depth (m)":wN -X6 -O -K >> fig.ps
awk '{print $4, $1}' profile.txt > junk
gmt psxy junk -J -R -B -W1 -O -K >> fig.ps
```

How GMT

Some Unix/Linux Basics

Baseman Plot

Geographica Man

Main Tand

Line Plot

Symbol Die

Contour Plots

ector Plots

How GMT

Some Unix/Linux Basics

aseman Plot

Geographical Man

Write Tex

Symbol Plot

Contour Plots

ector Plots

Session - 8

Symbol Plot

To plot symbols, gmt uses the command psxy itself with the option -S.

Options for -S

rectangle. No size needs to be specified, but the x- and y-dimensions must be found in columns 3 and 4. -Sr -Ss square. size is diameter of circumscribing circle. -St triangle, size is diameter of circumscribing circle. -Svvector. Direction (in degrees counter-clockwise from horizontal) and length must be found in columns 3 and 4. size, if present, will be interpreted as arrowwidth/headlength/headwidth [Default unit is 0.075c/0.3c/0.25c (or 0.03i/0.12i/0.1i)]. By default arrow attributes remains invariant to the length of the arrow. To have the size of the vector scale down with decreasing size, append nnorm, where vectors shorter than norm will have their attributes scaled by length/norm. To center vector on balance point, use -Svb; to align point with the vector head, use -Syh: to align point with the vector tail, use -Syt [Default]. To give the head point's coordinates instead of direction and length, use -Sys. Upper case B. H. T. S will draw a double-headed vector [Default is single head]. -sv Same as -Sv, except azimuth (in degrees east of north) should be given instead of direction. The azimuth will be mapped into an angle based on the chosen map projection (-Sv leaves the directions unchanged.) -Sw pie wedge. Start and stop directions (in degrees counter-clockwise from horizontal) for pie slice must be found in columns 3 and 4 -sw Same as -Sw, except azimuths (in degrees east of north) should be given instead of the two directions. The azimuths will be mapped into angles based on the chosen map projection (-Sw leaves the directions unchanged.) cross (x). size is diameter of circumscribing circle. -Sx y-dash (|). size is the length of a short vertical line segment. -Sy

Introduction

How GMT

Some Unix/Linu Rasics

Basemap Plo

Geographica Map

Write Tex

Symbol Plot

Contour Plots

Vector Plot

	-S+	plus (+). size is diameter of circumscribing circle.
	-Sa	star. size is diameter of circumscribing circle.
	-Sb	Vertical \mathbf{b} ar extending from $base$ to y , $size$ is bar width. Append \mathbf{u} if $size$ is in x-units [Default is plot-distance units]. By default, $base = \text{ymin}$. Append $\mathbf{b}base$ to change this value.
	-SB	Horizontal \mathbf{bar} extending from $base$ to x . $size$ is bar width. Append \mathbf{u} if $size$ is in y-units [Default is plot-distance units]. By default, $base = xmin$. Append $\mathbf{b}base$ to change this value.
	-Sc	circle. size is diameter of circle.
	−Sd	diamond. size is diameter of circumscribing circle.
	-Se	ellipse. Direction (in degrees counter-clockwise from horizontal), major_axis, and minor_axis must be found in columns 3, 4, and 5.
	-SE	Same as -Se, except azimuth (in degrees east of north) should be given instead of direction. The azimuth will be mapped into an angle based on the chosen map projection (-Se leaves the directions unchanged.)
		will be inapped unto an angle based on the chosen map projection (-see leaves the unrections dictioninged.) Furthermore, the axes lengths must be given in km instead of plot-distance units. An exception occurs for a linear projection in which we assume the ellipse axes are given in the same units as -R.
	-Sf	front. $-\mathbf{Sf}_{gap/size[dir][type][.offset]}$. Supply distance gap between symbols and symbol size. If gap is negative, it is interpreted to mean the number of symbols along the front instead. Append dir to plot symbols
Symbol Plot		on the left or right side of the front [Default is centered]. Append type to specify which symbol to plot: box, circle, fault, slip, or triangle. [Default is fault]. Slip means left-lateral or right-lateral strike-slip arrows
		(centered is not an option). Append :offset to offset the first symbol from the beginning of the front by that amount [Default is 0].
	-Sg	octa g on. <i>size</i> is diameter of circumscribing circle.
	-Sh	hexagon. size is diameter of circumscribing circle.

x-dash (-). \emph{size} is the length of a short horizontal line segment.

-S-

Introduction	-Sj	$Rotated\ rectangle.\ Direction\ (in\ degrees\ counter-clockwise\ from\ horizontal),\ x-dimension,\ and\ y-dimension\ must\ be\ found\ in\ columns\ 3,\ 4,\ and\ 5.$
How GMT Works?	-sj	Same as $-Sj$, except azimuth (in degrees east of north) should be given instead of direction. The azimuth will be mapped into an angle based on the chosen map projection ($-Sj$ leaves the directions unchanged.) Furthermore, the dimensions must be given in the instead of plot-distance units. An exception occurs for a linear projection in which we assume the dimensions are given in the same units as $-R$.
Some Unix/Linux	-Sk	kustom symbol. Append <name>/size, and we will look for a definition file called <name>.def in (1) the</name></name>
Basics	-5K	Auston Symbol. Append valantes/size, and we win look for a definition fine cancer shared vote in (1) are current directory or (2) in -f.gmt or (3) in SGMT_SHAREDIR/custom. The symbol as defined in that file is of size 1.0 by default; the appended size will scale symbol accordingly. Users may add their own custom *.def files; see CUSTOM SYMBOLS below:
Basemap Plot	91	
Geographical Map	-SI	letter or text string (less than 64 characters). Give size, and append /string after the size. Note that the size is only approximate; no individual scaling is done for different characters. Remember to escape special characters like *. Optionally, you may append %font to select a particular font [Default is ANNOT_FONT_PRIMARY].
Write Text	-Sm	math angle arc, optionally with one or two arrow heads. The size is the radius of the arc. Start and stop directions (in degrees counter-clockwise from horizontal) for arc must be found in columns 3 and 4. Use
Line Plot		-Smf to add arrow head at first angle, -Sml for arrow head at last angle, and -Smb for both [Default is no arrow heads].
Symbol Plot	-Sn	pentagon. size is diameter of circumscribing circle.
Contour Plots	-Sp	p oint. No size needs to be specified (1 pixel is used).
Vector Plots	−Sq	quoted line, i.e., lines with annotations such as contours. Append [d]D[f] Link X nfo[-]abelinfo]. The required argument controls the placement of labels along the quoted lines. Choose among five controlling algorithms:

 ${\bf i} {\bf n} {\bf verted} \ {\bf triangle}. \ {\it size} \ {\bf is} \ {\bf diameter} \ {\bf of} \ {\bf circumscribing} \ {\bf circle}.$

-Si

Example-1: Temperature profile

Circle with 0.15cm diameter

gmt psxy profile-t.txt -J -R -B -Sc0.15 -O >> fig.ps

Introduction

Works?

Some Unix/Linu Basics

Basemap Pl

Geographica Map

Write Tex

... ...

Symbol Plot

Contour Plots

Example-2: Temperature profile

Red color filled circle with 0.15cm diameter

gmt psxy profile-t.txt -J -R -B -Sc0.15 -G255/0/0 -O >> fig.ps

Introduction

How GMT

Some Unix/Linu Basics

asemap Plo

Geographica Map

Write Tex

Symbol Plot

Contour Plots

Vector Plo

Example-3: Temperature profile

Introductio

How GMT Works?

Some Unix/Linu Basics

Baseman Plo

Geographical Map

Write Tex

Symbol Plot

Contour Plate

laster Plats

Drawing a rectangle in the plot

```
gmt psbasemap -P -JX8/-12 -R0/30/0/3000 -B10:"T (@+o@+C)":/500:"Depth (m)":WN -X4 -Y10 -K > fig.ps
```

gmt psxy profile-t.txt -J -R -B -Sc0.15 -G255/0/0 -O -K
$$>>$$
 fig.ps

gmt psxy junk -J -R -B -Sr -O
$$>>$$
 fig.ps

How GMT

Some Unix/Linux Basics

Basemap Plot

Geographica Map

Write Text

. . . _ . . .

Symbol Plot

Contour Plots

Adding text inside the box

```
Introductio
```

How GMT Works?

Some Unix/Linux

Baseman Plot

Geographical Map

Write Text

ы Бы

Symbol Plot

Contour Plots

ector Plots

```
# Basemap
gmt psbasemap -P -JX8/-12 -R0/30/0/3000 -B10:"T (@+o@+C)":/500:"Depth (m)":WN -X4 -Y10 -K > fig
# Symbol plot
gmt psxy profile-t.txt -J -R -B -Sc0.15 -G255/0/0 -O -K >> fig.ps
# Draw box
echo "23 500 2.8 2" > junk
gmt psxy junk -J -R -B -Sr -O -K >> fig.ps
# circle inside box with red color
echo "19 480" > junk
gmt psxy junk -J -R -B -Sc0.2 -Gred -O -K >> fig.ps
# text
echo "20 480 Temp" > junk
```

gmt pstext junk -N -R -J -F+f12p, Helvetica, black+a0+jLM -B -O >> fig.ps

How GMT

Some Unix/Linux Basics

Baseman Plot

Geographica

Write Text

Symbol Plot

Contour Plate

Other symbols

```
# Square
                           gmt_psbasemap -P -JX6 -R0/11/0/100 -B2:"":/20:"":WS -X4 -Y5 -K > fig.ps
                           gmt psxv sample.txt -J -R -B -Ss0.3 -G255/0/0 -O -K >> fig.ps
                           echo "2 90 -Ss0.3" | amt pstext -J -R -B -N -F+f15p -0 -K >> fig.ps
                           # triangle
                           gmt psbasemap -P -JX -R -B -X8 -O -K >> fig.ps
                           gmt psxy sample.txt -J -R -B -St0.3 -G255/0/0 -O -K >> fig.ps
                           echo "2 90 -St0.3" | amt pstext -J -R -B -N -F+f15p -O -K >> fig.ps
                           # plus
                           gmt psbasemap -P -JX -R -B -X-8 -Y8 -O -K >> fig.ps
                           gmt psxv sample.txt -J -R -B -S+0.3 -G255/0/0 -O -K >> fig.ps
                           echo "2 90 -S+0.3" | amt pstext -J -R -B -N -F+f15p -O -K >> fig.ps
                           # star
                           qmt psbasemap -P -JX -R -B -X8 -O -K >> fig.ps
                           gmt psxy sample.txt -J -R -B -Sa0.3 -G255/0/0 -O -K >> fig.ps
                           echo "2 90 -Sa0.3" | gmt pstext -J -R -B -N -F+f15p -O -K >> fig.ps
                           # dash
                           gmt psbasemap -P -JX -R -B -X-8 -Y8 -O -K >> fig.ps
Symbol Plot
                           qmt psxy sample.txt -J -R -B -S-0.3 -G255/0/0 -O -K >> fig.ps
                           echo "2 90 -S-0.3" | qmt pstext -J -R -B -N -F+f15p -0 -K >> fiq.ps
                           # diamond
                           gmt psbasemap -P -JX -R -B -X8 -O -K >> fig.ps
                           gmt psxy sample.txt -J -R -B -Sd0.3 -G255/0/0 -O -K >> fig.ps
```

echo "2 90 -S-0.3" | qmt pstext -J -R -B -N -F+f15p -0 >> fig.ps

How GMT

Some Unix/Linux Basics

Basemap Plot

Geographica Map

Write Text

LL BL.

Symbol Plot

Contour Plots

How GMT

Some Unix/Linux Basics

Saseman Plot

Geographical Man

Write Tex

Symbol Plot

Contour Plots

Vector Plots

Session - 9

Contour Plots

'makecpt' command

Introductio

How GMT Works?

Some Unix/Linux Basics

Basemap Plot

Geographical Man

Write Text

Symbol Plot

Contour Plots

ector Plot

Purpose: To create a color palette table used to plot contour maps.

Syntax: makecpt -T -C > outputfile

Options

-T Define the range of values of the parameter to be plotted given in the format "low/high/increment"

-C Type of color palette (rainbow, polar, grey, gebco, no_green)

Example: makecpt -T20/40/2 -Crainbow > out.cpt

Contour commands

Introductio

How GMT Works?

Some Unix/Linu Basics

Basemap Plo

Geographical Map

Write Tex

C. b al Dia

Contour Plots

- pscontour Contour table data by direct triangulation
- grdcontour
 Make contour map using grided data
- grdimage
 Color map using grided data

(1) pscontour

Introductio

How GMT Works?

Some Unix/Linu Basics

asemap Plo

Geographical Map

Write Tex

Symbol Plo

Contour Plots

/ector Plots

pscontour requires an input file which contains data in the x,y,parameter format.

Basemap options : -J, -R, -B

Additional options :

-C : filename of the color palette table

-A : Annotation interval

-W : Line thickness

Example: SST map

Introductio

How GMT Works?

Some Unix/Linu Basics

Basemap Plo

Geographica Map

Write Tex

Symbol Pla

Contour Plots

ector Plots

GMT script

```
# create palette table
gmt makecpt -T20/30/1 -Crainbow > color.cpt

# basemap
gmt psbasemap -P -JM12 -R40/110/-30/30 -B20 -X5 -Y5 -K > fig.ps

# geography map
gmt pscoast -J -R -B -G100 -W1 -0 -K >> fig.ps

# contour with pscontour
gmt pscontour temp-jan.out -J -R -B -Ccolor.cpt -A1 -W1 -0 >> fig.ps
```

Plot

Introduction

How GM

Some Unix/Linu Basics

Basemap Plo[.]

Geographica Map

Write Text

Symbol Plo

Contour Plots

How GMT Works?

Some Unix/Linu Basics

Basemap Plo

Geographical Map

Write Tex

Symbol Pla

Contour Plots

ector Plots

Color map with -I option

```
# create palette table
gmt makecpt -T20/30/1 -Crainbow > color.cpt

# basemap
gmt psbasemap -P -JM12 -R40/110/-30/30 -B20 -X5 -Y5 -K > fig.ps

# contour with pscontour
awk '$3 > 0 {print $0}' temp-jan.out > junk
gmt pscontour junk -J -R -B -Ccolor.cpt -I -A1 -W1 -O -K >> fig.ps

# geography map
gmt pscoast -J -R -B -G100 -W1 -O >> fig.ps
```

How GMT

Some Unix/Linux Basics

Basemap Plot

Geographical Map

Write Text

Symbol Blos

Contour Plots

(2) grdcontour

Introductio

How GMT Works?

Some Unix/Linu: Basics

Basemap Plo

Geographical Map

Line Plot

Contour Plots

/ector Plots

grdcontour requires the input file in the gridded (binary) format. Hence the xyz file in the ascii format has to be converted to binary using one of the three gridding commands.

The GMT modules for gridding are:

- nearneighbor (Grid table data using a "Nearest neighbor" algorithm")
- triangulate (Do optimal (Delaunay) triangulation and gridding of Cartesian table data)
- **3** surface Grid table data using adjustable tension continuous curvature splines

Example: Gridding with nearneighbor

Introductio

How GMT Works?

Some Unix/Linu Basics

Basemap Plot

Geographical Map

Write Tex

Line Plot

Symbol Plot

Contour Plots

ector Plot

gmt nearneighbor junk -V -R -I1 -Gjunk.grd -S100

- Grid size
- -G Output filename
- -S Search radius hat determines which data points are considered close to a node.

GMT Script

Contour Plots

```
# Gridding with neighbour
# create palette table
gmt makecpt -V -T20/30/1 -Crainbow > color.cpt
# basemap
gmt psbasemap -V -P -JM12 -R40/110/-30/30 -B20 -X5 -Y5 -K > fig.ps
# Remove flag data with awk
awk '$3 > 0 {print $0}' temp-jan.out > junk
# gridding using surface
gmt nearneighbor junk -V -R -I1 -Gjunk.grd -S100
# contour with grdcontour
amt grdcontour junk.grd -V -J -R -B -C1 -Alf8 -W1 -O -K >> fig.ps
# geography map
gmt pscoast -V -J -R -B -G100 -W1 -O >> fig.ps
```

Figure

Introduction

How GMT

Some Unix/Linu: Basics

Basemap Plo

Geographica Map

Write Text

LL DL

Symbol Plo

Contour Plots

Restricting data

```
Introductio
```

How GMT Works?

Some Unix/Linux Basics

asemap Plo

Geographical Map

Write Text

Discount of the Control

Symbol Plo

Contour Plots

```
# Gridding with neighbour restricting data
# create palette table
gmt makecpt -V -T20/30/1 -Crainbow > color.cpt
# basemap
amt psbasemap -V -P -JM12 -R40/110/-30/30 -B20 -X5 -Y5 -K > fig.ps
# Remove flag data with awk
awk '$3 > 0 && $1 > 80 {print $0}' temp-ian.out > iunk
# gridding using surface
gmt nearneighbor junk -V -R -I1 -Gjunk.grd -S100
# contour with grdcontour
gmt grdcontour junk.grd -V -J -R -B -C1 -A1f8 -W1 -O -K >> fig.ps
# geography map
gmt pscoast -V -J -R -B -G100 -W1 -O >> fig.ps
```

How GMT

Some Unix/Linux Basics

Basemap Plot

Geographica Map

Write Text

Symbol Plo

Contour Plots

Gridding with triangulate

Introductio

How GM7 Works?

Some Unix/Linu: Basics

asemap Plo

Geographical Map

Write Tex

Line Plot

Symbol Plo

Contour Plots

- triangulate reads one or more ASCII [or binary] files containing x,y[,z] and performs Delaunay triangulation.
- It finds how the points should be connected to give the most equilateral triangulation possible.

Gridding with 'surface'

GMT script:

```
How GMT
Works?
```

Some Unix/Linu Basics

Basemap Plo

Geographical Map

Write Text

Symbol Plo

Contour Plots

```
# create palette table
gmt makecpt -V -T20/30/1 -Crainbow > color.cpt
# basemap
amt psbasemap -V -P -JM12 -R40/110/-30/30 -B20 -X5 -Y5 -K > fig.ps
# Remove flag data with awk
awk '$3 > 0 {print $0}' temp-jan.out > junk
# gridding using surface
amt surface junk -V -R -I0.1 -Gjunk.ard
# contour with ardcontour
gmt grdcontour junk.grd -V -J -R -B -C1 -A1f8 -W1 -O -K >> fig.ps
# geography map
qmt pscoast -V -J -R -B -G100 -W1 -O >> fig.ps
```

How GMT

Some Unix/Linux Basics

Basemap Plot

Geographica Map

Write Text

Symbol Plo

Contour Plots

Restricting data plotting with -L option. GMT script:

qmt pscoast -V -J -R -B -G100 -W1 -O >> fig.ps

Contour Plots

```
# create palette table
gmt makecpt -V -T28/30/0.2 -Crainbow > color.cpt
# basemap
amt psbasemap -V -P -JM12 -R40/110/-30/30 -B20 -X5 -Y5 -K > fig.ps
# Remove flag data
awk '$3 > 0 {print $0}' temp-jan.out > junk
# gridding using surface
gmt surface junk -V -R -I0.1 -Gjunk.grd
# contour with grdcontour
qmt qrdcontour junk.qrd -V -J -R -B -C0.2 -A0.2f8 -L28/30 -W1 -O -K >> fig.
# geography map
```

How GMT

Some Unix/Linu> Basics

Basemap Plo[.]

Geographica Map

Write Text

Symbol Pla

Contour Plots

(3) grdimage

Makes color map using gridded data.

```
# create palette table
gmt makecpt -V -T20/30/1 -Crainbow > color.cpt
# basemap
amt psbasemap -V -P -JM12 -R40/110/-30/30 -B20 -X5 -Y5 -K > fig.ps
# Remove flag data with awk
awk '$3 > 0 {print $0}' temp-jan.out > junk
# gridding using surface
amt surface junk -V -R -I0.1 -Gjunk.ard
# contour with grdcontour
gmt grdimage junk.grd -V -J -Ccolor.cpt -O -K >> fig.ps
# geography map
gmt pscoast -V -J -R -B -G100 -W1 -O >> fig.ps
```

Contour Plots

How GMT

Some Unix/Linu Basics

Basemap Plot

Geographical Map

Write Text

Symbol Plot

Contour Plots

Restricting data

```
# Background color as white
                 gmt gmtset COLOR BACKGROUND white
                 # create palette table
                 gmt makecpt -V -T28/30/0.1 -Crainbow > color.cpt
                 # basemap
                 qmt psbasemap -V -P -JM12 -R40/110/-30/30 -B20 -X5 -Y5 -K > fig.ps
                 # Select data in the range
                 awk '$3 >= 28 {print $0}' temp-jan.out > junk
                 # gridding using surface
                 gmt surface junk -V -R -I0.1 -Gjunk.grd
                 # contour with ardcontour
                 amt grdimage junk.grd -V -J -Ccolor.cpt -O -K >> fig.ps
Contour Plots
                 # geography map
```

gmt pscoast -V -J -R -B -G100 -W1 -O >> fig.ps

How GMT

Some Unix/Linu Basics

Basemap Plot

Geographical Map

Write Text

Symbol Plo

Contour Plots

Color Scale with psscale

Introductio

How GMT Works?

Some Unix/Linu Basics

Basemap Plo

Geographica Map

Write Text

Symbol Pla

Contour Plots

ector Plots

Purpose: Plot a gray or color scale-bar on maps psscale Options

- Defines the reference point on the map for the color scale
- -C Name of the cpt file
- -B Set annotation, tick, and gridline interval for the colorbar

Example: Vertical scale

```
Introduction
```

How GMT Works?

Some Unix/Linux Basics

D. Dl. .

Geographical

Write Tex

Symbol Pla

Contour Plots

```
# Create cpt file
gmt makecpt -T20/30/1 -Crainbow > color.cpt
# basemap
gmt psbasemap -P -JX10 -R0/10/-10/10 -B5 -X5 -Y10 -K > fig.ps
# psscale
gmt psscale -R -J -Dx12c/0c+w10c/0.3c+jCB -Ccolor.cpt -B1 -0 >> fig.ps
```

How GMT

Some Unix/Linux

Basemap Plot

Geographical Map

Write Text

Symbol Dist

Contour Plots

Example: Horizontal scale

```
Introduction
```

How GMT Works?

Some Unix/Linux

Racaman Plat

Geographical Man

Write Text

vviite rex

Symbol Plo

Contour Plots

```
# Create cpt file
gmt makecpt -T20/30/1 -Crainbow > color.cpt
# basemap
gmt psbasemap -P -JX10 -R0/10/-10/10 -B5 -X5 -Y10 -K > fig.ps
# psscale
gmt psscale -R -J -Dx5c/-2c+w10c/0.3c+jCB+h -Ccolor.cpt -B1 -0 >> fig.ps
```

Example: Horizontal scale

Introductio

How GMT

Some Unix/Linu: Basics

Baseman Plot

Geographica Map

Write Text

Symbol Plo

Contour Plots

How GMT

Some Unix/Linux Basics

Basemap Plot

Geographical Map

Write Tex

Symbol Pla

Contour Plots

Vector Plots

Session - 10

Methods

Introduction

How GMT Works?

Some Unix/Linux Basics

Pacaman Plat

Geographica Map

Write Tex

vvrite rex

Symbol Plo

Contour Plots

- Using psxy
- Using grdvector

(1) Vector Plot using psxy

introductio

How GMT

Some Unix/Linu Basics

Basemap Plo

Geographica Map

Write Text

Svmbol Plo

Contour Plots

Vector Plots

The options -Sv and -SV in psxy is used to plot vectors.

- -Sv Syntax : -Svsize
 Direction (in degrees counterclockwise from horizontal) and length must be found in column 3 and 4. size provides the size of the arrow head.
- -SV Syntax : -Svsize
 Direction (in degrees clockwise with respect to north) and length must be found in column 3 and 4.

The option -G can be used to color the arrow.

Example-1

Introduction

How GMT Works?

Some Unix/Linux Basics

Basemap Plo

Geographica Map

Write Text

Symbol Plo

Contour Plots

```
# Plot vector using psxy
#basemap
qmt psbasemap -P -JX8 -R0/10/0/10 -B2 -X5 -Y4 -K > fig.ps
# Create a data
echo "5 5 0 1" > junk
# draw vector
qmt psxy junk -J -R -B -Sv0.2c+e -G0 -O -K >> fig.ps
# text
echo "5 -1 -Sv0.2c -G0" | qmt pstext -N -J -F+f15p -R -B -0 -K >> fiq.ps
#basemap
gmt psbasemap -J -R0/10/0/10 -B2 -Y12 -O -K >> fig.ps
# Create a data
echo "5 5 0 1" > junk
# draw vector
qmt psxy junk -J -R -B -SV0.2c+e -G0 -O -K >> fig.ps
# text
echo "5 -1 -SV0.2c -G0" | gmt pstext -N -J -F+f15p -R -B -0 >> fig.ps
```

How GMT

Some Unix/Linux

Rasaman Plot

Geographica Man

Main Tand

C....I. I DI

C DI...

Example-2

Introduction

How GMT

Some Unix/Linux Basics

asemap Plot

Geographica Map

Write Text

Symbol Pla

Contour Plots

```
# Plot vector using psxy
#
#basemap
gmt psbasemap -P -JX8 -R0/10/0/10 -B2 -X5 -Y4 -K > fig.ps
# draw vector
gmt psxy vector2.txt -J -R -B -SV0.3c+e -G0 -0 >> fig.ps
```

How GMT

Some Unix/Linux Basics

Basemap Plot

Geographica Man

Main Tand

Symbol Dia

Contour Plate

Example -3: Vector on geographical map

Introductio

How GMT Works?

Some Unix/Linux Basics

Basemap Plo

Geographica Map

Write Text

Combal Dia

Contour Plots

Vector Plots

A sample current data for Indian Ocean was generated using a matlab/octave program.

```
% create a current vector data for Indian Ocean
fid=fopen("vector3.out", "w");
for y=-27.5:5.0:27.5
   for x=32.5:5.0:107.5
        fprintf(fid,"%f %f %f,%f\n", x,y,45.0,0.5)
        end
end
fclose(fid)
```

How GMT Works?

Some Unix/Linu Basics

Basemap Plo

Geographical Map

Write Text

Symbol Pla

Contour Plots

Vector Plots

GMT script

```
#
# Plot vector using psxy for Indian Ocean
#
#basemap
gmt psbasemap -P -JM10 -R30/110/-30/30 -B20 -X5 -Y10 -K > fig.ps
# draw vector
gmt psxy vector3.out -J -R -B -SV0.2c+e -G0 -O -K >> fig.ps
gmt pscoast -JM -R -B -Dl -G100 -O >> fig.ps
```

Plot

ntroduction

Works?

Unix/Linu Basics

Basemap Plo

Geographica Map

Write Text

Contour Plots

(2) Vector plot using grdvector

Introduction

How GMT Works?

Some Unix/Linux Basics

asemap Plo

Geographica Map

Write Tex

Line Plot

. .

Contour Plots

Vector Plots

grdvector plots vector field from two velocity component grided data sets.

Options

- -J Projection
- -W Line thickness
- -Q Vector parameters
- -C Color to indicate vector magnitude.

Example-1

```
Introduction
How GMT
Works?
Some
Unix/Linux
Basics
Basemap Plot
```

Geographical Map

Write Text

C....I. I DI.

Contour Plots

Contour Plots

```
# Vector using grdvector
# Basemap
qmt psbasemap -P -JM12 -R30/120/-40/30 -B20/10 -X5 -Y5 -K > fiq.ps
# Extract U and V component data
awk '$3 > -999 {print $1, $2, $3*50}' wind.txt > u.txt
awk '$3 > -999 {print $1, $2, $4*50}' wind.txt > v.txt
# Gridding using surface
gmt surface u.txt -V -R -I1 -Gu.grd
gmt surface v.txt -V -R -I1 -Gv.grd
# Vector plot with grdvector
amt ardvector u.grd v.grd -J -W -Q0.07i+e -G0 -O -K >> fig.ps
# geography
gmt pscoast -J -R -B -Dl -W -G100 -O >> fig.ps
```

How GMT Works?

Some Unix/Linu Basics

Basemap Plo

Geographica Map

Write Text

Line Plot

Syllibol I lot

Contour Plots

Example - 2:

Vector Plots

```
# Vector using ardvector (-I3 in ardvector)
# Basemap
amt psbasemap -P -JM12 -R30/120/-40/30 -B20/10 -X5 -Y5 -K > fig.ps
# Extract U and V component data
awk '$3 > -999 {print $1, $2, $3*50}' wind.txt > u.txt
awk '$3 > -999 {print $1, $2, $4*50}' wind.txt > v.txt
# Gridding using surface
gmt surface u.txt -V -R -I3 -Gu.grd
gmt surface v.txt -V -R -I3 -Gv.grd
# Vector plot with grdvector
amt ardvector u.grd v.grd -J -W -Q0.07i+e -G0 -O -K >> fig.ps
# geography
```

gmt pscoast -J -R -B -Dl -W -G100 -O >> fig.ps

How GMT

Some Unix/Linu Basics

Basemap Plo

Geographica Map

Write Text

Symbol Plo

Contour Plots

Example-3: Magnitude and vector

```
# Vector using ardvector (COlor vector)
                         # Create cpt file
                         gmt makecpt -T0/10/1 -Crainbow > color.cpt
                         amt makecpt -T0/10/1 -Cno green > spd.cpt
                         # Basemap
                        amt psbasemap -P -JM12 -R30/120/-40/30 -B20/10 -X5 -Y5 -K > fig.ps
                         # Extract U and V component data
                         awk '$3 > -999 {print $1, $2, $3*50}' wind.txt > u.txt
                         awk '$3 > -999 {print $1, $2, $4*50}' wind.txt > v.txt
                         awk '$3 > -999 {print $1, $2, $5}' wind.txt > spd.txt
                         # Gridding using surface
                         amt surface u.txt -V -R -I3 -Gu.ard
                         gmt surface v.txt -V -R -I3 -Gv.grd
                        amt surface spd.txt -V -R -I0.2 -Gspd.ard
                         # contour
                        gmt grdimage spd.grd -J -Cspd.cpt -O -K >> fig.ps
                         # Vector plot with grdvector
                        qmt qrdvector u.grd v.grd -J -Ccolor.cpt -W -Q0.07i+e -G0 -O -K >> fig.ps
Vector Plots
                         # geography
                        gmt pscoast -J -R -B -Dl -W -G100 -O >> fig.ps
```

How GMT

Some Unix/Linux Basics

Basemap Plo

Geographical Map

Write Text

C DI...

How GMT

Some Unix/Linux Basics

Basemap Plot

Geographical Map

Write Text

Symbol Plo

Contour Plots

Vector Plots

Thank You!